
  

  
Abstract — In this paper, a comparison of three discrete 

models of DC-DC converters is presented. The methods 

considered are forward Euler, backward Euler, and 

trapezoidal rule. Results obtained from continuous model, 

based on averaging and linearization, and from discrete 

models are compared. It is shown that behavior of Euler-

based discrete models may differ significantly from behavior 

of continuous model based on averaging and linearization. 

Trapezoidal-based discrete model and continuous model 

exhibit almost identical behavior at lower frequencies. 
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I. INTRODUCTION 

HE TOPIC of this paper is a comparison of discrete 
models of DC-DC converters. These models are based 

on forward Euler, backward Euler, and trapezoidal rule. 
All results are based on analysis of buck converter, 
presented in Fig. 1, although the results may be 
generalized to other types of DC-DC converters.  
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Fig. 1. Electrical circuit of the buck converter. 
 

In this paper, discrete models derived using forward 
Euler, backward Euler and trapezoidal rules are 
considered. Their step responses are compared to step 
response of the continuous model based on averaging and 
linearization. Also, pole position errors introduced by 
discretization, as well as basic features of discretization 
methods, are analyzed and compared for Euler and 
trapezoidal rules. 

II. AVERAGING AND LINEARIZATION 

Buck converter in Fig. 1 consists of switching network 
(switch S and diode D) and the output low pass LC filter. 
Let us assume that DC-DC converter operates in the 
continuous conduction mode (CCM).  Switches considered 
are ideal and nondisipative. Switch S produces rectangular 
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voltage waveform of duty-ratio D on the input of the low 
pass filter. The filter removes AC components produces 
average DC output voltage 

 
SOUT X T I�v v DV≈ 〈 〉 =  (1)  

 where 
STXv 〉〈 represents averaged value of Xv  within one 

switching period ST . 

Value of the output DC component is directly 
proportional to the value of duty ratio D. The switch 
operation is presented in Fig. 2. 

 
Fig. 2. Switch output voltage vX(t) (blue) and its average DC value on the 
output of the low pass filter(red) for D=0.5.  

 
In equilibrium, the capacitor current iC obeys the 

ampere-second (As) balance [1] within one switching 
period  

 0
SC Ti〈 〉 = . (2) 

Similarly, the inductor voltage vL obeys the voltage-second 
balance [1] within one switching period 

 0
SL Tv〈 〉 = . (3) 

Otherwise, the converter is not in equilibrium. The 
average capacitor voltage and the inductor current are 
obtained as 

 
S SC T OUT T I�v v DV〈 〉 = 〈 〉 =  (4) 

and 

 S

S

OUT T

L T OUT

v
i I

R

〈 〉
〈 〉 = + . (5) 

Equations which define the behavior of inductor, 
capacitor, and resistor remain the same after averaging 

 
S S

S

L
L T L T

T

di d
v L L i

dt dt
〈 〉 = = 〈 〉 , (6) 

 
S S

S

C
C T C T

T

dv d
i C C v

dt dt
〈 〉 = = 〈 〉 , (7) 

and 

 
S S SR T OUT T R Tv v R i〈 〉 = 〈 〉 = 〈 〉 . (8) 

For the switch S and the diode D, however, the 
equations are simplified by averaging operator 
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(1 )

S

S S

D T I�

D T L T

v DV

i D i

〈 〉 =

〈 〉 = − 〈 〉
 (9) 

and 

 
(1 )

S

S S

S T I�

S T L T

v D V

i D i

〈 〉 = −

〈 〉 = 〈 〉
 (10) 

Values of voltage and current on the input of the 
switching network are I�V  and 

SL TD i〈 〉 , and on its output 

I�DV and 
SL Ti〈 〉 , respectively. Nonlinear, time-variant 

switching network after averaging becomes linear, time-
invariant two-port element, the ideal transformer. This fact 
greatly simplifies analysis of DC-DC converters. In Fig. 3, 
the averaged circuit of buck converter is presented. 

 
Fig. 3. Averaged circuit of buck converter. 

 
However, input voltage vI�, output current iOUT, and 

control variable d may not be constants  
 

0
ˆ( ) ( )I� I� I�v t V v t= +  (11) 

 
0

ˆ( ) ( )OUT OUT OUTi t I i t= +  (12) 

 0
ˆ( ) ( )d t D d t= +  (13) 

where ˆ ( )I�v t , ˆ ( )OUTi t  and ˆ( )d t  represent variable parts of 

vI�, iOUT, and d, respectively. According to (11) and (13), 
input voltage transferred to the secondary side of the ideal 
transformer may be presented as 

 
0

0

0 0 ˆ( ) ( ) ( )

ˆ ˆˆ( ) ( ) ( ) .

I� I� I�

I� I�

d t v t D V D v t

V d t v t d t

= +

+ +
 (14) 

Usually, the term ˆˆ ( ) ( )I�v t d t  is much smaller than the 

other terms in this sum, and may be neglected, because 

0
)(ˆ

I�I� Vtv << , and 0)(ˆ Dtd << . Effectively, linearization 

is introduced into already averaged circuit and further 
simplifies analysis - converter may now be analyzed in s-
domain.  

In Fig. 4, averaged and linearized circuit in s-domain is 
presented. Without any loss of generality, factors 

00 I�D V  

and 
0OUTI  may be excluded from further analysis [1]. They 

have no effect on model’s dynamics, only on the position 
of the bias point. 

According to (12), (14), and Fig. 4, there are three 
independent sources: input voltage, control and output 
current. Also, there is one output signal, output voltage. 
Therefore, three transfer functions may be obtained:  
control – to – output voltage transfer function 

 2
2

( )
( )

1 1( )

I�

OUT
C OV

OUT

V

v s LCG s
d s

s s
CR LC

= =

+ +

 (15) 

input voltage – to – output voltage transfer function  

 

0

2
2

( )
( )

1 1( )
OUT

IV OV

I�

OUT

D

v s LCG s
v s

s s
CR LC

= =

+ +

 (16) 

and output current – to – output voltage transfer function 

 2
2

1
( )

( )
1 1( )

OUT
OC OV

OUT

OUT

s
v s CG s
i s

s s
CR LC

= = −

+ +

. (17) 

 
Fig. 4. Buck converter model based on averaging and linearization. 

Constant sources 
00 I�D V  and 

0OUTI are excluded - they have no effect 

on converter’s dynamics. 

 
These transfer functions are very similar - (15) and (16) 

are the same equation with different multiplicative factor, 
while (17) is their first derivative. Therefore, further 
analysis in this paper considers (15) only.  

Let us define coefficients  

 
1

OUT

a
CR

=  (18) 

 
1

=b
LC

 (19) 

and normalize (15) with 
0

1
I�V
−  

 
0

2
2

( )
( ) C OV

C OV

I�

G s
g s

V
=  (20) 

so we may write (15) in more compact form 

 2 2
( )C OV

b
g s

s as b
=

+ +
. (21) 

III. ANALYSIS OF EFFECTS OF DISCRETIZATION 

In time domain, the first derivative is equivalent to 
multiplication with complex variable s in s-domain 

 
( )

( )
dx t

sX s
dt

→  (22) 

where ( ) { ( )}X s x t= L . For sufficiently small time step 

t∆ , the first derivative may be approximated with finite 
difference 

 
( ) ( )

( , )
dx t x t

f x t
dt t

∆
= ≈

∆
, (23) 

which gives 
 ( ) ( , )x t t f x t∆ ≈ ∆ . (24) 
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For discrete time domain, three simple variations of (24) 
may be obtained [2] 

 ( 1) ( ) ( , )Sx n x n T f x n+ = +  (25) 

  
 ( 1) ( ) ( , 1)Sx n x n T f x n+ = + +  (26) 

and 

 
( , ) ( , 1)

( 1) ( )
2S

f x n f x n
x n x n T

+ +
+ = + . (27) 

Equations (25), (26), and (27) represent forward Euler, 
backward Euler, and trapezoidal rule for numerical 
integration. It may be shown that these rules are equivalent 
to approximations of complex variable s [3] 

 
1

1 S

S

z
s z sT

T

−
≈ ⇔ ≈ +  (28) 

 
1

11
1 S

S

z
s z sT

T

−
−−

≈ ⇔ ≈ −  (29) 

and  

 
1 22 1

1 1 2
S

S S

sTz
s z

T z sT

+−
≈ ⇔ ≈

+ −
 (30) 

respectively, where ST is discretization/switching period. 

By substituting (28), (29) and (30) in (21), three 
approximations of discrete transfer function are obtained: 

 
2

1 2 2
( )

( 1) ( 1)
=

− + − +

S
vd

S S

bT
g z

z aT z bT
 (31) 

 
2 2

2 2 2 2
( )

( 1) ( 1)
=

− − − +

S
vd

S S

bT z
g z

z aT z z bT z
 (32) 

and 

 

2
2

3 2
2 2 2

( 1)
4( )

( 1) ( 1) ( 1)
2 4

+

=

− + − + +

S

vd

S S

T
b z

g z
T T

z a z b z

 (33) 

Approximations (28), (29) and (30) predict different 
positions of zeros and poles of discrete transfer function. 
Variations of pole predictions are small. However, it does 
not guarantee small variations in dynamic behavior of 
discrete model. 

In Fig. 5 and Fig. 6, step responses of normalized 
continuous system and its discrete approximations are 
presented. For Fig. 5, circuit parameters are 100 µH=L , 

1 mF=C , R = 2 Ω, and 10 µs=ST , thus giving values of 

model parameters 310=a  and 710=b . For Fig. 4, circuit 
parameters are the same except for 10= ΩR , which gives 

210=a . ( ) 0.5 ( )d t h t= . 

Inductance L and capacitance C define corner frequency 
of converter’s output filter 

 
1

503.3 Hz
2π

= =Pf
LC

. (34) 

Switching frequency fS is needed to be at least 6-7 times 
greater than the corner frequency of the output filter [4]. In 
this example, 100 kHz=Sf , and this “rule of thumb” is 

more than satisfied. 
In Fig. 5 difference between step responses of discrete 

models is small, but visible. Models exhibit the same 

decaying oscillatory behavior, but with different damping 
factor. 

 
Time [ms] 

 
Fig. 5. Step responses of continuous model (black, --), and discrete 
(green)  models of buck converter for 2R = Ω . 

 

 
Time [ms] 

 
Fig. 6. Step responses of continuous model (black, --) and discrete 
(green)  models of buck converter for 10R = Ω . 
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Trapezoidal rule based model exhibits almost identical 
response as the continuous model, and accurately predicts 
the damping factor.  

In Fig. 6, however, it may be observed that difference is 
more critical. Euler forward rule based model is boundary 
stable, while Euler backward rule gives inaccurate 
prediction for the damping factor. For → ∞R , Euler 
backward rule based model still shows stable operation of 
the converter, while in reality it may be unstable or 
boundary stable. And again, trapezoidal rule gives almost 
the same prediction of system behavior as the continuous 
model. 

To find an explanation, let us calculate the poles and 
their modules for Euler and trapezoidal approximations 

 [ ] 0.9995 0.0316 1p EFz j= ± = , (35) 

 [ ] 0.9985 0.0316 0.9990p EBz j= ± = , (36) 

and 

 [ ] 0.9990 0.0316 0.9995p Tz j= ± = . (37) 

Forward Euler rule predicts pole placement on unit 
circle for Fig. 4. Backward Euler rule predicts lower 
damping factor than trapezoidal rule. Pole positions of 
continuous model transferred into z-domain via step-
invariant transform [4] are 

 [ ]

[ ] 0.9990 0.0316p C Ss T

p Cz e j= = ± . (38) 

It may be observed that predictions of step-invariant 
transform and trapezoidal rule are identical for lower 
frequencies. 

Let us derive magnitude of pole position error 
introduced by Euler rules and trapezoidal rule utilizing 
second order Taylor series 

 

 
2 2

1 ...
2

p Ss T p S

p p S

s T
z e s T= = + + + , (39) 

 
2 2

1 1 ...
2

p Ss T p S

p p S

s T
z e s T

−− = = − + − , (40) 

and 

 

2

/2

/2 2

( )
1 ...

2 8
( )

1 ...
2 8

S

S

p S p S
sT

p sT

p S p S

s T s T

e
z

s T s Te
−

+ + +

= =

− + −

. (41) 

Substituting (28) and (29) in (39) and (40) with pz z= , 

error magnitude of pole position for Euler rules is obtained 

 
2( )

(1 )
2

p Ss T p SE

EF p SE

s T
error e s T= − + ≅ , (42) 

and 

 
2( )

(1 )
2

p Ss T p SE

EB p SE

s T
error e s T

−
= − − ≅ . (43) 

for 1<<SEpTs . Magnitude of error introduced by both 

rules is of the same order. Magnitude of the error 
introduced by trapezoidal rule is obtained by balancing 
(41) with (30) 

 
/2 /2(1 ) (1 )

2 2
p ST p STs T s Tp ST p ST

T

s T s T
error e e

−
= − − +  (44) 

 
3( )2

3 8
p ST

T

s T
error =  (45) 

Clearly, the error introduced by trapezoidal rule is much 
smaller than that introduced by Euler methods.  

For fixed error magnitude, switching frequency for 
Euler rules may be found as a function of trapezoidal rule 
switching frequency. For 503.3 Hzpf =  and 10 µsSTT =  

error introduced by trapezoidal rule is 

 
3

6
(2 )2

2.6354 10
3 8

p ST

T

f T
error

π
−

= = ⋅ . (46) 

If T Eerror error= , switching frequency for Euler rules is 

obtained 

 
2

726 ns
2

T

SE

p

error
T

fπ
= = . (47) 

In this case, switching frequency for Euler rules has to 
be more than 10 times higher than switching frequency for 
trapezoidal rule for the same error magnitude. Clearly, the 
model of DC-DC converter based on trapezoidal rule is 
superior to models based on Euler rules. 

IV. CONCLUSION 

Derivation and analysis of discrete transfer function of 
DC-DC converters using Euler forward, Euler backward 
and trapezoidal rule is presented in this paper. It is shown 
that pole position error, introduced by discretization based 
on Euler rules, may have a large effect on prediction of the 
system behavior. Trapezoidal rule is superior to both Euler 
rules – it correctly predicts the system behavior and 
position of poles of discrete system at lower frequencies. It 
may have a significant effect on compensator design for 
DC-DC converter. 
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